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Introduction
Oh hey, it’s another one of those textbook notes that I never complete. I’ve decided to try something dif-
ferent in order to develop my understanding of measure theory. One of the primary for understanding
measure theory is Gerald B. Folland’s Real Analysis and Applications — and one of the benefits it has over a
lot of other texts is that it has a significant number of exercises. I’m going to try to do them all — I’ll start
with Chapters 1–3, and if that goes well enough, continue up through whatever chapter I end up having
to tap out at. Interspersed, I will include various notes. I figure that in order to make a subject like mea-
sure theory really stick, I need to deal with it consistently.
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Chapter 1

Section 1.2
Definition (σ-Algebra). An algebra of sets on X is a nonempty collection A of X that is closed under finite
unions and complements.

A σ-algebra is an algebra that is closed under countable unions.

Exercise (Exercise 1): A family of sets R ⊆ P(X) is called a ring if it is closed under finite unions and differences. A
ring that is closed under countable unions is called a σ-ring.

(a) Rings (σ-rings) are closed under finite (countable) intersections.
(b) If R is a ring (σ-ring), then R is an algebra (σ-algebra) if and only if X ∈ R.
(c) If R is a σ-ring, then {E ⊆ X | E ∈ R or Ec ∈ R} is a σ-algebra.
(d) If R is a σ-ring, then {E ⊆ X | E ∩ F ∈ R for all F ∈ R} is a σ-algebra.

Solution:
(a) Note that for any E, F ∈ R, that E ∩ F = E ∪ F \ ((E \ F) ∪ (F \ E)).
(b) Let R be a σ-ring. Then, R is a σ-algebra if for some E ∈ R, Ec ∈ R. Since Ec = X \ E ∈ R, we have X \ E∪ E ∈ R

as R is closed under (countable) unions. Hence, X ∈ R.

If X ∈ R, then for any E ∈ R, Ec = X \ E ∈ R. Thus, R is closed under intersections.
(c) Since R is a σ-ring, we only need show that the set A = {E ⊆ X | E ∈ R or Ec ∈ R} is closed under comple-

ments. We see that for any E ∈ A, it is the case that either E ∈ R or Ec ∈ R, so Ec ∈ A if and only if Ec ∈ R or
E ∈ R, so A is closed under complements.

(d) Let R be a σ-ring, and let A = {E ⊆ X | E ∩ F ∈ R for all F ∈ R}. We will show that A is closed under unions
and complements.

Let E, F ∈ A. Then, for all S ∈ R, we have E ∩ S ∈ R and F ∩ S ∈ R. Since R is closed under unions, we must
have (E ∪ F) ∩ S = (E ∩ S) ∪ (F ∩ S) ∈ R, so E ∪ F ∈ A.

Let E ∈ A.

Proposition (Proposition 1.2): The Borel σ-algebra, Bℝ, is generated by each of the following:
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(a) the open intervals, E1 = {(a,b) | a < b};

(b) the closed intervals, E2 = {[a,b] | a < b};

(c) the half-open intervals, E3 = {(a,b] | a < b} or E4 = {[a,b) | a < b};

(d) the open rays, E5 = {(a,∞) | a ∈ ℝ} or E6 = {(−∞,a) | a ∈ ℝ};

(e) the closed rays, E7 = {[a,∞) | a ∈ ℝ} or E8 = {(−∞,a] | a ∈ ℝ}.

Proof. The elements for Ej for j ≠ 3, 4 are open or closed, and the elements of E3, E4 are Gδ sets — for in-
stance,

(a,b] =
∞⋂

n=1

(
a,b + 1

n

)
.

Thus, σ
(
Ej

)
⊆ Bℝ for each j. On the other hand, every open set in ℝ is a countable union of open inter-

vals, so Bℝ ⊆ σ(E1). Thus, Bℝ = σ(E1). □

Section 1.3
Theorem (Theorem 1.9): Let (X,M,µ) be a measure space. Let N = {N ∈ M | µ(N) = 0}, and let M =

{E ∪ F | E ∈ M and F ⊆ N for some N ∈ N}. Then, M is a σ-algebra, and there is a unique extension µ of
µ to a complete measure on M.

Proof. Since M and N are closed under countable unions, so is M. If E ∪ F ∈ M, with E ∈ M and F ⊆ N ∈ N,
we may assume E∩N = ∅ — else, we replace F with F\E and N with N\E. Then, E∪F = (E ∪N)∩(Nc ∪ F),
so (E ∪ F)c = (E ∪N)c ∪ (N \ F). Since (E ∪N)c ∈ M and N \ F ⊆ N, we have (E ∪ F)c ∈ M, so M is a σ-
algebra.

If E ∪ F ∈ M as above, we set µ(E ∪ F) = µ(E). This is well-defined, since if E1 ∪ F1 = E2 ∪ F2, with Fj ⊆ Nj ∈
N, then E1 ⊆ E2 ∪N2, so µ(E1) ⩽ µ(E2) + µ(N2) = µ(E2). Similarly, µ(E2) ⊆ µ(E1). □

Exercise (Exercise 6): Complete the proof of Theorem 1.9.

Solution: We now wish to show that every subset of a null set in M is an element of M. This can be seen by the fact
that for some F ⊆ N ∈ N, we have F = ∅ ∪ F ∈ M.

To show uniqueness, we suppose there is some other measure ν : M → [0,∞) such that ν agrees with µ on M. For
some E ∈ M and F ⊆ N ∈ N, we have

ν(E ∪ F) = µ(E)
= µ(E ∪ F).

Exercise (Exercise 7): If µ1, . . . ,µn are measures on (X,M), and a1, . . . ,an ∈ [0,∞), then µ =
∑n

j=1 ajµj is a measure
on (X,M).

Solution: It is clear that µ(∅) = ∅. If we have a sequence of disjoint sets {Ei }∞i=1 ⊆ M, then

µ

( ∞⋃
i=1

Ei

)
=

n∑
j=1

ajµj

( ∞⋃
i=1

Ei

)
=

n∑
j=1

aj

∞∑
i=1

µj(Ei)

=

∞∑
i=1

©­«
n∑
j=1

ajµj
ª®¬(Ei)



Real Analysis and Applications (Folland) Exercise Workthrough Avinash Iyer

=

∞∑
i=1

µ(Ei).

Exercise (Exercise 8): If (X,M,µ) is a measure space, and
{
Ej

}∞
j=1 ⊆ M, then µ

(
lim infEj

)
⩽ lim infµ

(
Ej

)
. Addition-

ally, if µ
(⋃

j⩾1 Ej
)
< ∞, then µ

(
lim supEj

)
⩾ lim supµ

(
Ej

)
.

Solution: Note that

lim infEj =
∞⋃

n=1

∞⋂
j=n

Ej.

Labeling

Fn =

∞⋂
j=n

Ej,

we have a sequence of inclusions

F1 ⊆ F2 ⊆ · · · ,

meaning that

µ
(
lim supEj

)
= inf

n⩾1
µ(Fn).

Note that we have

µ(Fn) = µ
©­«

∞⋃
n=j

Ej
ª®¬.

Exercise (Exercise 9): If (X,M,µ) is a measure space, and E, F ∈ M, then µ(E) + µ(F) = µ(E ∪ F) + µ(E ∩ F).

Solution: We have

µ(E) = µ(((E ∪ F) \ F) ⊔ E ∩ F)
µ(E) = µ(E ∪ F) − µ(F) + µ(E ∩ F)

µ(E) + µ(F) = µ(E ∪ F) + µ(E ∩ F).

Exercise (Exercise 12): Let (X,M,µ) be a finite measure space.
(a) If E, F ∈ M with µ(E△M) = 0, then µ(E) = µ(F).
(b) Let E ∼ F if µ(E△F) = 0. Then, ∼ is an equivalence relation on M.
(c) For E, F ∈ M, define ρ(E, F) = µ(E△F). Then, ρ(E,G) ⩽ ρ(E, F) + ρ(F,G), hence ρ defines a metric on the space

M/∼ of equivalence classes.

Solution:
(a) Note that E = (E \ F) ⊔ (E ∩ F), and F = (F \ E) ⊔ (F ∩ E). We also have µ(E△F) = µ(E \ F) + µ(F \ E) = 0, so

µ(F \ E) = µ(E \ F) = 0. Thus,

µ(F) = µ(F ∩ E)
= µ(E ∩ F)
= µ(E).

Definition. Let (X,M,µ) be a measure space.

• If µ(X) < ∞, then µ is called finite.

• If X =
⋃

j⩾1 Ej, where Ej ∈ M for each j and µ
(
Ej

)
< ∞, then µ is called σ-finite.
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• If for each E ∈ M with µ(E) = ∞, there exists F ∈ M with F ⊆ E and 0 < µ(F) < ∞, then we say µ is
semifinite.

Exercise (Exercise 13): Every σ-finite measure is semifinite.

Solution: Let (X,M,µ) be a measure space such that X =
⋃

j⩾1 Ej, where
{
Ej

}
j⩾1 ⊆ M and µ

(
Ej

)
< ∞ for each j.

Suppose µ(E) = ∞. Then, we may find F ⊆ E by finding j such that µ
(
Ej

)
> 0, and taking F = Ej ∩ E. Then, it must

be the case that 0 < µ(F) ⩽ µ
(
Ej

)
< ∞.

Exercise (Exercise 14): If µ is a semifinite measure and µ(E) = ∞, then for any C > 0 there exists F ⊆ E such that
C < µ(F) < ∞.

Solution: By the definition of a semifinite measure, there exists F1 ⊆ E such that 0 < µ(F1) < ∞. We let δ1 = µ(F1).

Now, it must be the case that µ(E \ F1) = ∞, else ∞ = µ(E) = µ(E \ F1) + µ(F1) < ∞, a contradiction.

Hence, there exists F2 ⊆ E \ F1 with 0 < µ(F2) < ∞. We let δ2 = µ(F2). Similarly, we find δn = µ(Fn), where
Fn ⊆ E \ (F1 ∪ · · · ∪ Fn−1).

Now, consider the series
∑

n⩾1 δn =
∑

n⩾1 µ(Fn) = µ
(⊔

n⩾1 Fn
)
. This series must diverge, as otherwise we would

have µ(E) = µ
(⊔

n⩾1 Fn
)
< ∞, which is yet again a contradiction.

Thus, for a given C > 0, we find N so large such that
∑N

n=1 δn > C. Then, F =
⊔N

n=1 Fn is our desired set.

Exercise (Exercise 15): Let µ be a measure on (X,M). Define µ0 on M by µ0(E) = sup{µ(F) | F ⊆ E and µ(F) < ∞}.
(a) µ0 is a semifinite measure It is called the semifinite part of µ.
(b) If µ is semifinite, then µ = µ0.
(c) There is a measure ν on M which only assumes the values 0 and ∞ such that µ = µ0 + ν.

Solution:
(a) Let E ∈ M be such that µ0(E) = ∞. Suppose toward contradiction that µ0 is not semifinite. Then, for any

F ⊆ E, it is the case that µ(F) = 0 or µ(F) = ∞, so it would then be the case that µ0(E) = 0, a contradiction.
(b) If µ(E) < ∞, then µ0(E) = µ(E), as E ⊆ E and µ(E) < ∞.

If µ(E) = ∞, then it is clear that µ0(E) = ∞, as for each C > 0 there is some F ⊆ E such that C < µ(F) < ∞.

Thus, µ = µ0.
(c) We define the measure ν on M by taking ν(E) = 0 whenever µ(E) < ∞ and ν(E) = ∞ whenever µ(E) = ∞.

Exercise: Let (X,M,µ) be a measure space. A set E ⊆ X is called locally measurable if E ∩ A ∈ M for all A ∈ M such
that µ(A) < ∞. Let M̃ be the collection of all locally measurable sets.

It is obvious that M ⊆ M̃. If M = M̃, then µ is called saturated.
(a) If µ is σ-finite, then µ is saturated.
(b) M̃ is a σ-algebra.

(c) Define µ̃ on M̃ by µ̃(E) = µ(E) if E ∈ M and µ̃(E) = ∞ otherwise. Then, µ̃ is a saturated measure on M̃ called
the saturation of µ.

(d) If µ is complete, so is µ̃.

(e) Suppose that µ is semifinite. For E ∈ M̃, define µ(E) = sup{µ(A) | A ∈ M and A ⊆ E}. Then, µ is a saturated
measure on M̃ that extends µ.

(f) Let X1 and X2 be disjoint uncountable sets, X = X1 ⊔ X2, and M the σ-algebra of countable and cocountable
sets in X. Let µ0 be the counting measure on P(X1) and define µ on M by µ(E) = µ0(E ∩ X1). Then,

• µ is a measure on M;
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• M̃ = P(X);
• and µ̃ ≠ µ.

Solution:
(a) Let µ be σ-finite, and let E ∈ M̃. We know that E ∩ A ∈ M for all A ∈ M with µ(A) < ∞. In particular, we can

select a disjoint collection
{
Aj

}∞
j=1 such that µ

(
Aj

)
< ∞ and

⊔
j⩾1 Aj = X. Thus, since E = X ∩ E, we must

have E ∈ M as E is locally measurable.

Section 1.4
Definition. An outer measure on a nonempty set X is a function µ∗ : P(X) → [0,∞] such that

• µ∗(∅) = 0;

• µ∗(A) ⩽ µ∗(B) if A ⊆ B;

• µ∗ (⋃
j⩾1 Aj

)
⩽
∑∞

j=1 µ
∗ (Aj

)
.

Proposition: Let E ⊆ P(X), and ρ : E → [0,∞] be such that ∅ ∈ E, X ∈ E, and ρ(∅) = 0. For any A ⊆ X,
define

µ∗(A) = inf

{∑
j⩾1

ρ
(
Ej

) ����� Ej ∈ E and A ⊆
⋃
j⩾1

Ej

}
.

Then, µ∗ is an outer measure.

Proof. For any A ⊆ X, there exists
{
Ej

}
j⩾1 ⊆ E such that A ⊆ ⋃

j⩾1 Ej (taking Ej = X). Clearly, µ∗(∅) = ∅.

Additionally, since A ⊆ B, we the infimum taken to define µ∗(A) includes the corresponding set in the def-
inition of µ∗(B), so µ∗(A) ⩽ µ∗(B).

Suppose
{
Aj

}
j⩾1 ⊆ P(X), and let ε > 0. For each j, there exists

{
Ej,k

}
k⩾1 ⊆ E such that Aj ⊆ ⋃

k⩾1 Ej,k

and
∑

k⩾1 ρ
(
Ej,k

)
⩽ µ∗ (Aj

)
+ ε2−j. Thus, if A =

⋃
j⩾1 Aj, we have A ⊆ ⋃

j,k⩾1 Ej,k, and
∑

j,k⩾1 ρ
(
Ej,k

)
⩽∑

j⩾1 µ
∗ (Aj

)
+ε, meaning µ∗(A) ⩽

∑
j⩾1 µ

∗ (Aj

)
+ε. Sine this holds for all ε > 0, we must have µ∗ (⋃

j⩾1 Aj

)
⩽∑

j⩾1 µ
∗ (Aj

)
. □

Definition. If µ∗ is an outer measure, a set A ⊆ X is called µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

for all E ⊆ X. In other words, A is measurable if it serves as a well-behaved “cookie cutter” for any subset
of X.

Note that it suffices to show that

µ∗(E) ⩾ µ∗(E ∩A) + µ∗(E ∩Ac).

Definition. If A ⊆ P(X) is an algebra, a function µ0 : A → [0,∞] is called a premeasure if µ0(∅) = 0 and,
for any sequence of disjoint sets

{
Aj

}∞
j=1 in A such that

⊔∞
j=1 Aj ∈ A, we have

µ0

( ∞⋃
j=1

Aj

)
=

∞∑
j=1

µ0
(
Aj

)
.

A premeasure induces an outer measure on X by

µ∗(E) = inf

{ ∞∑
j=1

µ0
(
Aj

) ����� Aj ∈ A,E ⊆
∞⋃
j=1

Aj

}
.
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Exercise (Exercise 17): If µ∗ is an outer measure on X and
{
Aj

}∞
j=1 is a sequence of disjoint µ∗-measurable sets, then

µ∗
(
E ∩

(⊔n
j=1 Aj

))
=
∑∞

j=1 µ
∗ (E ∩Aj

)
.

Solution: By the definition of measurability, we have

µ
©­«E ∩ ©­«

∞⊔
j=1

Aj
ª®¬ª®¬ = µ

©­«©­«E ∩ ©­«
∞⊔
j=1

Aj
ª®¬ª®¬ ∩A1

ª®¬ + µ
©­«©­«E ∩ ©­«

∞⊔
j=1

Aj
ª®¬ª®¬ ∩Ac

1
ª®¬

= µ(E ∩A1) + µ
©­«E ∩ ©­«

∞⊔
j=2

Aj
ª®¬ª®¬.

Continuing in this pattern, we get

µ
©­«E ∩ ©­«

∞⊔
j=1

Aj
ª®¬ª®¬ =

∞∑
j=1

µ
(
E ∩Aj

)
.

Exercise (Exercise 18): Let A ⊆ P(X) be an algebra, Aσ the collection of countable unions of sets in A, and Aσδ the
collection of countable intersections in Aσ. Let µ0 be a premeasure on A, and let µ∗ be the induced outer measure.

(a) For any E ⊆ X and ε > 0, there exists A ∈ Aσ with E ⊆ A, µ∗(A) ⩽ µ∗(E) + ε.
(b) If µ∗(E) < ∞, then E is µ∗-measurable if and only if there exists B ∈ Aσδ with E ⊆ B and µ∗(B \ E) = 0.
(c) If µ0 is σ-finite, then the restriction µ∗(E) < ∞ in (b) is superfluous.

Solution:
(a) We know that

µ∗(E) = inf


∞∑
j=1

µ0
(
Aj

) ������ Aj ∈ A,E ⊆
∞⋃
j=1

Aj

,

meaning that, by the definition of infimum, for any ε > 0, there exists some sequence
{
Aj

}∞
j=1 in A such that

µ0
©­«
∞⋃
j=1

Aj
ª®¬ ⩽ µ∗(E) + ε.

Defining A =
⋃∞

j=1 Aj, we have A ∈ Aσ.

(b) Let µ∗(E) < ∞.

Suppose E is measurable. Then, for any T ⊆ X, we have

µ∗(T ) = µ∗(E ∩ T ) + µ∗(Ec ∩ T ).
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