Real Analysis and Applications (Folland) Exercise Workthrough Avinash Iyer

Introduction

Oh hey, it’s another one of those textbook notes that I never complete. I've decided to try something dif-
ferent in order to develop my understanding of measure theory. One of the primary for understanding
measure theory is Gerald B. Folland’s Real Analysis and Applications — and one of the benefits it has over a
lot of other texts is that it has a significant number of exercises. I'm going to try to do them all — I'll start
with Chapters 1-3, and if that goes well enough, continue up through whatever chapter I end up having
to tap out at. Interspersed, I will include various notes. I figure that in order to make a subject like mea-
sure theory really stick, I need to deal with it consistently.
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Chapter 1

Section 1.2

Definition (0-Algebra). An algebra of sets on X is a nonempty collection A of X that is closed under finite
unions and complements.

A o-algebra is an algebra that is closed under countable unions.
Exercise (Exercise 1): A family of sets R C P(X) is called a ring if it is closed under finite unions and differences. A
ring that is closed under countable unions is called a o-ring.
(a) Rings (o-rings) are closed under finite (countable) intersections.
(b) If R is a ring (o-ring), then R is an algebra (o-algebra) if and only if X € R.
(c) If Risa o-ring, then {E C X | E € Ror E€ € R} is a o-algebra.
(d) If Risa o-ring, then {EC X | ENF € Rforall F € R} is a o-algebra.

Solution:
(a) Note thatforany E,F € R, that ENF=EUF\ ((E\ F)U(F\E)).

(b) Let Rbe a o-ring. Then, R is a o-algebra if for some E € R, E€ € R. Since E¢ = X\ E € R, wehave X\EUE € R
as R is closed under (countable) unions. Hence, X € R.

If X € R, then for any E € R, E€ = X\ E € R. Thus, R is closed under intersections.

(c) Since R is a o-ring, we only need show that theset A = {E C X | E € Ror E€ € R} is closed under comple-
ments. We see that for any E € A, it is the case that either E € R or E€ € R, s0 E€ € Aifand only if E€ € R or
E € R, so A is closed under complements.

(d) Let Rbea o-ring,andlet A = {ECX|ENTF € Rforall F € R}. We will show that A is closed under unions
and complements.

LetE,F € A. Then, forall S € R, wehave ENS € Rand FN' S € R. Since R is closed under unions, we must
have EUF)NS=(ENS)U(FNS) e R, s0 EUF € A.

LetE € A.

Proposition (Proposition 1.2): The Borel o-algebra, Br, is generated by each of the following:
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(a) the open intervals, &1 = {(a,b) | a < b};

(b) the closed intervals, &, = {[a,b] | a < b};

(c) the half-open intervals, £3 = {(a,b] | a <b}or &y ={[a,b) | a<b};
(d) the openrays, &5 = {(a,00) | a € R} or £ = {(-c0,a) | a € R};

(e) the closed rays, &7 = {[a, ) | a € R} or £g = {(—,a] | a € R}.

Proof. The elements for &; for j # 3,4 are open or closed, and the elements of €3, €4 are G5 sets — for in-
stance,

= 1
(a,b] = ﬂ(a,b+ E)'

n=1

Thus, G(Ej) C Br for each j. On the other hand, every open set in R is a countable union of open inter-
vals, so Br C 0(€1). Thus, Br = d(&1). O

Section 1.3

Theorem (Theorem 1.9): Let (X, M, i) be a measure space. Let N = {N € M | u(N) =0}, and let M =
{EUF|EeMandF C N for some N € N}. Then, M is a o-algebra, and there is a unique extension i of

u to a complete measure on M.

Proof. Since M and N are closed under countable unions, so is M.IfEUFe M, withEe Mand FC N e N,
we may assume ENN = @ — else, we replace F with F\E and N with N\E. Then, EUF = (EUN)N(N€ U F),

so (EUF)® = (EUN) U (N \ F). Since (EUN)® € Mand N \ F C N, we have (EUF)® € M, so Misa o-
algebra.

If EUF € M as above, we set W(E UF) = w(E). This is well-defined, since if E; UF; = E UF,, with Fj C Nj €
N, then E1 C E; U Ny, so i(E1) < p(E2) + w(N2) = w(Ey). Similarly, u(E2) € w(Eyq). O

Exercise (Exercise 6): Complete the proof of Theorem 1.9.

Solution: We now wish to show that every subset of a null set in M is an element of M. This can be seen by the fact
that for some F C N € N, we have F= @ UF € M.

To show uniqueness, we suppose there is some other measure v: M — [0, o) such that v agrees with p on M. For
some E € Mand F C N € N, we have

V(EUF) = u(E)
=T(EUT).

Exercise (Exercise 7): If uy, ..., un are measures on (X, M), and ay,...,an € [0,0), then pu = Z?ﬂ ajj is a measure
on (X, M).

Solution: It is clear that (@) = @. If we have a sequence of disjoint sets {E; }5o, € M, then

{0e)-£ 00

i=1
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=) (k.
i=1
Exercise (Exercise 8): If (X, M, p) is a measure space, and {Ej }]011 C M, then p(liminf E;j) < liminf u(E;). Addition-

ally, if u(Uj>1 Ej) < oo, then p(limsup E;) > limsup u(Ej).

Solution: Note that

Labeling

we have a sequence of inclusions

meaning that
u(limsup Ej) = T1lr;f1 w(Fn).

Note that we have

w(Fn) = ”(O Ej)-
n=j

Exercise (Exercise 9): If (X, M, i) is a measure space, and E, F € M, then w(E) + w(F) = W(EUF) + wW(ENF).
Solution: We have

HE) =w(EUH\FHUENF)
H(E) = W(EUF) —u(F) + w(ENF)
H(E) + u(F) = W(EUF) + w(ENF).

Exercise (Exercise 12): Let (X, M, p) be a finite measure space.
(a) IfE,F e M with wW(EAM) =0, then w(E) = u(F).
(b) Let E ~ Fif p(EAF) = 0. Then, ~ is an equivalence relation on M.
(c) For E,F € M, define p(E, F) = w(EAF). Then, p(E,G) < p(E, F) + p(F, G), hence p defines a metric on the space
M/~ of equivalence classes.
Solution:
(a) NotethatE = (E\F)U (ENF),and F = (F\ E) U (FNE). We also have w(EAF) = wW(E\ F) + w(F\ E) = 0, so
wF\E) = w(E\F) =0. Thus,
w(F) =uFNE)
=wENF)
= w(E).

Definition. Let (X, M, 1) be a measure space.
o If u(X) < oo, then p is called finite.
e If X = ;51 Ej, where Ej € M for each j and y1(E;) < oo, then s called o-finite.
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e If for each E € M with p(E) = oo, there exists F € Mwith F € Eand 0 < p(F) < oo, then we say p is
semifinite.

Exercise (Exercise 13): Every o-finite measure is semifinite.
Solution: Let (X, M, ) be a measure space such that X = [ J;>1 Ej, where {Ej }j>1 C Mand p(Ej) < o for each j.

Suppose p(E) = co. Then, we may find F C E by finding j such that u(Ej) > 0, and taking F = Ej N E. Then, it must
be the case that 0 < u(F) < u(Ej) < oo.

Exercise (Exercise 14): If 1 is a semifinite measure and p(E) = oo, then for any C > 0 there exists F C E such that
C < u(F) < oo.

Solution: By the definition of a semifinite measure, there exists F; C E such that 0 < p(Fy) < co. We let 81 = p(Fy).
Now, it must be the case that u(E \ F1) = oo, else oo = pu(E) = w(E \ F1) + w(Fq) < o0, a contradiction.

Hence, there exists F € E \ F{ with0 < w(Fp) < co. Welet d, = w(Fp). Similarly, we find 6n = p(Fn), where
Fn CEN(FRU---UF,_1).

Now, consider the series Z ns1n = Z >l wFn) = u(|_|n>1 Fn). This series must diverge, as otherwise we would
have (E) = (| In>1 Fn) < o0, which is yet again a contradiction.

Thus, for a given C > 0, we find N so large such that Z:zl dn > C. Then, F = |_|T]:]:1 Fn is our desired set.

Exercise (Exercise 15): Let i be a measure on (X, M). Define pg on M by pg(E) = sup{u(F) | F € E and p(F) < oo}.
(a) po is a semifinite measure It is called the semifinite part of p.
(b) If uis semifinite, then p = pg.

(c) There is a measure v on M which only assumes the values 0 and co such that g = pg + v.

Solution:

(a) Let E € M be such that pg(E) = co. Suppose toward contradiction that pg is not semifinite. Then, for any
F C E, it is the case that pu(F) = 0 or u(F) = oo, so it would then be the case that p(E) = 0, a contradiction.

(b) If W(E) < oo, then pp(E) = w(E),as E € E and wW(E) < oco.
If uW(E) = oo, then it is clear that pg(E) = oo, as for each C > 0 there is some F C E such that C < w(F) < co.

Thus, 1 = yo.

(c) We define the measure v on M by taking v(E) = 0 whenever pu(E) < oo and v(E) = co whenever p(E) = oco.

Exercise: Let (X, M, u) be a measure space. A set E C Xis called locally measurable if EN A € M for all A € M such
that u(A) < co. Let M be the collection of all locally measurable sets.

It is obvious that M € M. If M = JT/[, then p is called saturated.

(a) If pis o-finite, then p is saturated.

(b) Misa o-algebra.

(c) Define [i on M by i(E) = w(E) if E € M and [(E) = oo otherwise. Then, [ is a saturated measure on M called
the saturation of p.

(d) If pis complete, so is H.

(e) Suppose that p is semifinite. For E € M, define w(E) = sup{u(A) | A € Mand A C E}. Then, pis a saturated
measure on M that extends . - B

(f) Let X7 and X3 be disjoint uncountable sets, X = X; LI X, and M the o-algebra of countable and cocountable
sets in X. Let pp be the counting measure on P(X;) and define uon M by u(E) = po(E N X1). Then,

® 1 is a measure on M;
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¢ M=P(X);
e and p# .
Solution:

(a) Let wbe o-finite, and let E € M. We know that EN A € M for all A € M with i(A) < co. In particular, we can
select a disjoint collection {Aj };x;l such that p1(Aj) < coand Llj>1Aj = X. Thus, since E = X N E, we must
have E € M as E is locally measurable.

Section 1.4

Definition. An outer measure on a nonempty set X is a function p*: P(X) — [0, co] such that
* w(@)=0
e n(A) < pu(B)if ACB;
° H*(Uj>1 AJ’) < Z;); FL*(AJ')'

Proposition: Let £ € P(X), and p: € — [0,00] besuchthat@ € £, X € €, and p(@) = 0. Forany A C X,
define

W(A) = inf{Z o(E)

j>1

EEEMMAQLJ&}

i>1
Then, y* is an outer measure.

Proof. Forany A C X, there exists {E; }]. & such that A C ;31 Ej (taking Ej = X). Clearly, u(2) = @.

>1g

Additionally, since A C B, we the infimum taken to define 1*(A) includes the corresponding set in the def-
inition of u*(B), so W (A) < w*(B).

Suppose {A; }).21 C P(X), and let e> 0. For each j, there exists {Ej,k}k>1 C Esuchthat A; C U1 Bk
and Y -1 p(Ejx) < 1w (Aj) + €27, Thus, if A = Uj»1Aj, wehave A C Uj 1> Bjx,and 35 154 p(Ejx) <
2 i>1 W (Aj)+e, meaning p(A) < Y 1w (A;)+e. Sine this holds for all & > 0, we must have p*(Uj»1 Aj) <
Zj>1 w (AJ')~ a
Definition. If u* is an outer measure, a set A C X is called u*-measurable if

H(E) = (ENA)+(ENAS)
for all E € X. In other words, A is measurable if it serves as a well-behaved “cookie cutter” for any subset

of X.

Note that it suffices to show that

wWi(E) 2 w(ENA)+u(ENAS).
Definition. If A C P(X) is an algebra, a function py: A — [0, o0] is called a premeasure if 1p(@) = 0 and,
for any sequence of disjoint sets { A; };x;l in A such that | |2, Aj € A, we have

[ee]

A

j=1

Ho

=) o(Ay).
j=1

A premeasure induces an outer measure on X by

mm:m{i}ﬂm)

j=1

A]' eAEC OA]}

j=1
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Exercise (Exercise 17): If 1* is an outer measure on X and {Aj };il
p*(E N ( H Aj)) =2 55 w(ENA;).

Solution: By the definition of measurability, we have

is a sequence of disjoint pu*-measurable sets, then

Aj N Af

W EN UAj =dl|EN |_|Aj NA |+ |EN
j=1 j=1 j=1

=wENA)+uEN UAj

Continuing in this pattern, we get

W EN L|Aj =Y uEnA)).

Exercise (Exercise 18): Let A C P(X) be an algebra, A the collection of countable unions of sets in A, and A s the
collection of countable intersections in Ag. Let py be a premeasure on A, and let u* be the induced outer measure.

(a) Forany E C X and ¢ > 0, there exists A € Ag with E C A, u*(A) < p*(E) + ¢.
(b) If u*(E) < oo, then E is p*-measurable if and only if there exists B € Ays withE C B and p*(B\ E) = 0.

(c) If pg is o-finite, then the restriction u*(E) < oo in (b) is superfluous.

Solution:
(a) We know that

W(E) =inff Y uo(Aj) [Aj e AEC( JAjL,
j=1 i=1

meaning that, by the definition of infimum, for any e > 0, there exists some sequence {Aj };X;l in A such that
(&9
Ko UAj < pi(E)+e.
j=1

Defining A = U;.”;l Aj, we have A € Ag.
(b) Let u*(E) < oo.

Suppose E is measurable. Then, for any T C X, we have

KM= ENT)+uENT).
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